
1

ANALYSIS OF MIXED CRITICAL AVIONICS AND SYSTEMS
Chris Walter

cwalter@wwtechgroup.com
WW Technology Group

Ellicott City, MD

Brian LaValley
blavalley@wwtechgroup.com

WW Technology Group
Westerly, RI

ABSTRACT

A goal of next generation avionics systems is the integration of avionics and mission applications on shared
resources to reduce their size/weight/power requirements and enable increased range, additional payload capacity,
and reduced logistics footprint and costs. The integration complexities can increase costs especially if mixed-
criticality applications (e.g., safety-critical, mission-critical, non-critical) are hosted on the same resource since
every application, regardless of criticality, must be certified (tested) to the level required by the highest criticality
application hosted on the resource. This adds significant cost to fielding complex systems, e.g. helicopter avionics
and Unmanned Autonomous Systems (UAS) that must integrate mixed-critical capabilities while mindful of size,
weight and power concerns (SWaP). In this environment, the ability to provide mixed-critical attributes, such as
security, real-time fault tolerance and performance is critical for predictable system response.

INTRODUCTION 

A goal of next generation avionics systems is the further
integration of avionics and mission applications on shared
resources. Doing so enables significant reductions in
size/weight/power requirements, logistics footprint and costs
while permitting increased range and additional payload
capacity. The integration complexities can introduce
additional cost elements related to certification when mixed-
criticality applications (e.g., safety-critical, mission-critical,
non-critical) are hosted on the same resource. Every
application, regardless of criticality, must be certified
(tested) to the level required by the highest criticality
application hosted on the resource or in the system partition
in which it is co-located. This adds significant cost to
fielding complex systems, e.g. helicopter avionics and
Unmanned Autonomous Systems (UAS) that must integrate
mixed-critical capabilities while being mindful of size,
weight and power concerns (SWaP).

In this environment, the ability to specify and analyze
mixed-critical attributes, such as security, real-time fault
tolerance and performance is essential for predictable system
response. The independence between the systems that may
have been previously ensured through separate hardware and
dedicated communications buses needs to be established in
the new configuration. Complexities are introduced as
applications now share critical hardware and software
resources where subtle interrelationships may exist that are
difficult for system designers to discover. Various strategies
have been developed using the concept of partitioning to

Presented at the AHS 69th Annual Forum, Phoenix, Arizona,
May 21–23, 2013. Copyright © 2013 by the American
Helicopter Society International, Inc. All rights reserved.

address this challenge. When applications are mapped to a
single hardware computing platform, the independence of
processing and memory operations across applications needs
to be provided through the partitioning mechanism. With a
platform that correctly provides the underlying partitioning
functions (such as ARINC 653), the distributed system can
be implemented on a single shared resource. The ability to
partition applications has been traditionally performed based
on a single aspect such as safety. Our work expands the
concept to a multi-dimensional approach that considers
aspects of performance, safety, security and dependability.

Figure 1 illustrates an example for transitioning from a
federated to an integrated system with a number of
applications of different criticality levels that share a
common platform. This arrangement brings significant
benefits in terms of resource utilization and reduction in the
space weight and power required to field an equivalent level
of functionality. With these benefits there are also
significant challenges that need to be met in terms of
handling increased levels of coupling and complexity while
verifying that required level of independence between
functions is still met.

Partition 2 Partition 3Partition 1

Radar

Flight
Controls

Platform
Management

Dedicated Busses

Federated Systems

HW HW

HW

Radar
Flight

Controls
Platform

Management

HW

Separation Kernel

Comms - MW Comms - MW Comms - MW

Mixed Criticality

Benefits
• Decreased Space, Weight, Power

• Increased Functionality

Challenges
• Increased Coupling and Dependencies

• Increased Complexity
• More Difficult Verification

Figure 1 - Mixed Criticality Systems



2

The separation kernel and associated communications
middleware provides the fundamental mechanisms to
support mixed criticality by establishing regions that isolate
behavior and interactions. These can be logical or physical
in nature, where the former are simply referred to as
containment regions while the latter are partitions. When
designing distributed systems, it is more appropriate to use
the concept of containment regions since they may cross a
variety of hardware boundaries and also be logical in nature
(e.g. peer processes). In this environment, the ability to
provide real-time fault tolerance and performance features
are also required for control systems and the independence
between the systems that was previously provided through
separate hardware and dedicated communications buses
must be established when the applications must share critical
hardware and software resources.

The enforcement of separation between applications of
different criticalities is a multi-dimensional problem. First,
the separation and functional and physical dependencies at
varying criticality levels for a single systems aspect (such as
safety) must be addressed. Next, the criteria must also be
evaluated across the multiple system aspects of interest and a
means of achieving the overall combination of objectives.
Each architecture component may be considered at different
criticality levels across aspects (for example a component is
safety crucial but not security critical) and the criticality
level in each of the aspects must be considered when
evaluating partitioning and physical and functional
dependencies.

CONCEPTUAL BASIS

Fundamental to our approach for mixed critical system
design is a capability to express criticality in a structured
manner for all aspects. This capability is supported by a
model based environment for rapid specification and
evaluation and allows sets of criticality attributes to be
created that can be assigned to architecture components.
Notionally, a criticality attribute set is a tuple with an entry
for each of the system aspects under consideration thus
permitting as much rigor to the descriptions are necessary.
This provides a powerful method for describing mixed levels
of criticality across many system aspects. Architectural
abstraction (hierarchy) and relations (component bindings)
are leveraged to flow criticality specifications through the
architecture to create a criticality map of the system.

Each of the criticality aspects considered under this
effort (performance, dependability, safety and security) is
defined by a set of meta-data tags that can be used to
establish the levels of criticality within each of these aspects.
The meta-data tags contain attributes that characterize the
criticality within the aspect and are suitable for comparing
criticality between architecture components that have been
assigned tags. These tags form the basis of aspect criticality
groupings based on the tag values and the cross criticality
dependency analysis we have proposed.

When working with the tags, we strive to provide a
flexible definition that can be used to represent tags that are
useful under varying development processes and system
certification regimes. The criticality tags are designed for
rapid adoption by programs by providing tags that use the
criticality definitions from standard certification processes.
We also provide extensible tag definitions so that they can
be customized to the needs of specific systems under
development or new processes and standards as they are
developed

Our objective is to develop methods to specify a flexible
and extensible set of foundational criticality tags. Tags
enable stakeholders to identify criticality values for
dependability, safety, security and performance and assign
the tags to system components. Furthermore, the tags can be
flowed down architectural hierarchies from higher levels of
the system architecture down to the deployment level
comprised of the computing platform. As WW Technology
Group’s EDICT tool [1] [2] [3] provides a robust tool
environment for developing the tag framework, it provides
the necessary environment and features to model, edit, and
apply tags to system models.

MODELING STEPS

A key element in our strategy for Mixed Critical
Architecture systems is to understand how each aspect is
intended to work, first individually and then integrated with
other aspects. The individual aspect problem is therefore
broken into steps that require:

a) Specification of aspect regions and the components
that reside in the region.

b) Evaluation of criticality levels within an aspect and
identification of conflicts within the aspect
(conflicts could be dependencies that violate
criticality precedence hierarchy or separation
violations that compromise criticality).

c) Removal of criticality conflicts within the aspect
through several methods:

1. Aspect Re-Characterization –
Redefine the criticality tags within an
aspect to remove conflicts.

2. Aspect Criticality Separation –
Re-allocation of functionality to separate
conflicting aspect criticalities into
partitionable areas.

3. Aspect Criticality Boundary Enforcement
– provide architectural services that
enforce the separation identified by the
aspect criticality boundaries.



3

4. Aspect Criticality Dependency
Enforcement –
provide architectural services that enforce
the desired dependency flow between
criticalities within an aspect and provide
the protections required to ensure
cooperation without compromise of the
aspect regions.

d) Repeat steps b/c until all conflicts have been
resolved for the aspect.

The underlying theory we will use is based on the
concept of an aspect region. The use of boundaries as an
underlying concept has been proposed for safety, security
and dependability. The nature of these boundaries requires a
degree of rigor in order to support artifact generation for
certification.

Of particular interest for a mixed-critical system is:

 the separation and/or cooperation of these aspect
regions for a given system implementation to ensure
violations do not exist across any boundaries where
separation is necessary.

 the ability to cooperatively share resources and
overhead functions when allowable in order to
maximize efficiency of the system architecture.

ASPECT SPECIFICATION

The system aspect boundaries are comprised from the
union of sets of individual aspect regions. Each aspect
region consists of groupings of system functions or
components that have a common aspect criticality tag.
Aspect regions are comprehensive in architectural scope,
that is, every component in system architecture must belong
to at least one region.

Once the regions are defined through the assignment of
criticality tags to system functions and components, the
process is further detailed by aspect specific specifications
or with system level analysis for dependability, safety or
security. The aspect criticality tags follow the form and
format described in the following sections and are used to
define the aspect regions by associating the tags with
components in the architecture model.

The criticality tags for an aspect can be assigned at
various levels of abstraction in the architecture model. A
common approach is to assign the criticality tags at a logical
or functional level of the architecture and then use the
hierarchical decomposition of the architecture model to
enable the flow down of the tags to lower level system
components. This approach matches well with common
development practices where major system functions or
subsystems are designated with criticality levels based on
stakeholder concerns. Safety criticality is often assigned to

system functions based on a preliminary hazard analysis that
generates a set of system hazards and the conditions that can
lead to hazard occurrence. This analysis often assigns
criticalities to the hazard, which in turn can be the basis for
safety criticality tags.

In addition to the hierarchical flow down of criticality
tags to establish aspect regions, the binding of software
components to the platform architecture is used to define the
scope of aspect regions. The allocation of system functions
(in terms of processes and threads) to the execution platform
(processors, partitions, networks, etc.) has a major impact on
the definition of aspect regions and the identification of
aspect region conflicts. In our approach the aspect criticality
tags follow the software components as they are bound to
the platform. This technique provides extensive flexibility
in aspect region specification because as the bindings are
modified the aspect region definitions are automatically
modified as well.

The concept of aspect criticality tag flow down and
binding is illustrated in Figure 2. In this example,
Subsystem A and Subsystem B are assigned a tuple of
criticality tags and the tags are flowed down to the set of
threads that implement the subsystem functions in the
software architecture. These threads are in turn bound to a
set of partitions and processors in the platform architecture.
The binding of the software components to the platform
architecture sets the stage for the evaluation of the aspect
regions.

Dependability Meta-Data Tags

The dependability aspect tag encompasses a
specification for the level of reliability and availability
required of the system component along with a general
description of a dependability level. The tag definition will
provide the ability to expand the definitions to other
dependability level sets beyond the two initial sets specified
here. Figure 3 depicts the structure of the tag design for
dependability.

Figure 2 - Aspect Criticality Tag Assignment



4

Each dependability tag contains a dependability level
specification, a reliability tag and an availability tag. The
reliability and availability tags are composed of a numerical
specification and a mission time. An availability and
reliability tag will be specified for each of the dependability
levels that are contained within the dependability tag. This
provides flexibility for system analysts to provide
customized reliability and availability specifications for each
level of dependability.

The baseline tag definition provides two types of
dependability tags: Basic and DO-178B. Each dependability
tag type contains a list of criticality levels to define
criticality of dependability within the type. For instance the
Basic Dependability Tag uses 3 levels (1) Flight Critical, (2)
Mission Critical and (3) Non Critical while the DO-178B tag
set uses the five criticality levels (A – E) defined by DO-
178B [4].

Safety Meta-Data Tags

The set of meta-data tags for the safety aspect, shown in
Figure 4, provides three types of criticality specifications.
These types of safety tags provide a basic safety critical
designation along with options for military standard 882
development or commercial flight systems under DO-178B.

The basic safety tag provides the most rudimentary
definition of safety criticality, safety critical or not critical.
This tag is useful for systems that are not bound to a specific
development process and have low levels of complexity.
This tag can also be useful early in design processes where
the safety criticality of architecture components has been
established but detailed hazard assessments have not yet
been completed.

The 882 Safety Tag provides a set of criticality values
that correspond with the software control categories used in
the standard to define the level of control the function
provides. This rating of I through IV is combined with a
severity metric that rates the impact of the improper
operation of the function on system hazards. The levels are

described in the left hand portion of Figure 5. The DO-178B
safety tag uses the same set of criticality levels that were
used in the dependability tags. These levels are defined in
the right hand portion of Figure 5.

Security Meta-Data Tags

The security tags are capable of defining the security
criticality of an architecture element using attributes from
information assurance certification processes. These
processes provide the background required to rigorously
define the security attributes and also provide a well-
accepted methodology for designating security levels.

Figure 6 depicts the tag design for the Security Aspect
Tag. All of the supported security tags contain a
classification designation. This designation represents the
highest level of information classification that the
component processes. The base classification level is
augmented by tag types that are designed to support
standardized information assurance certification processes.
The initial set of tags will support JAFAN 6/3 [6] , DCID
6/3 [8] and DoD 8500.2 [7].

Figure 4 5- Safety Criticality Tags

Figure 3 - Dependability Criticality Tags

Figure 54- MIL882C and DO-178B Safety Criticality [5]



5

JAFAN 6/3 and DCID 6/3 both use the same set of
attributes for security criticality: levels of concern for
Confidentiality, Integrity and Availability (CIA) and a
Protection Level. The definitions for the levels of concern
for CIA are shown in Figure 7. The protection levels 1 -5
are defined based on the mix of classification levels and user
access that is in the system.

Another IA certification standard that applies to many
DoD systems is 8500.2. This process rates the security
criticality of systems with a set of Mission Assurance
Categories for each of the Confidentiality, Integrity and
Availability concerns. These categories are supported by a
Confidentiality level that is used to address access control
factors. These attributes are defined in Figure 8. We have
defined a security tag that uses these attributes to describe
criticality in 8500.2 terminologies.

Figure 8 - 8500.2 MAC Levels

TOOL SUPPORT

The EDICT Tool Suite by WW Technology Group [1]
[2] [3] is a model based engineering platform that provides a
means for establishing coherent views of organization and
behavior by integrating architectural and analytical models
of systems and their constituent components/services. The
EDICT tool provides a robust tool environment for
developing the tag framework and possesses the features
needed to model, edit, and apply tags of all types to system
models. The creation of common and reusable tagging
components within EDICT enables faster and more flexible
development of the various individual tag types.

The EDICT tools provide two primary features to define
architectures: the Logical Architecture Editor and the
System Architecture Editor. The Logical Architecture
Editor allows users to define an abstract functional
organization of a system and capture it in a model. The
Logical Architecture Model describes the design from a
functional decomposition stand-point that captures initial
structural decisions as to how the system’s functions and
services will be broken out and related to each other. The
System Architecture Model provides a description of the
physical components in a system and the connectionsFigure 7- JAFAN LoC Definition

Figure 6 - Security Criticality Tags



6

through which they interact. The System Architecture
model describes the computing platform and software
elements that implement the internals of the functional areas
identified in the Logical Architecture Model. It is often
useful for design completeness and various types of aspect
analysis to capture the relationship between these two
representations of the design.

Tagging Logical Architectures

Tool support provides for the creation a Logical
Architecture Aspect Model that associates individual aspect
tags with components (or groups of components) within a
logical architecture model. This association also acts as an
augmentation model on the architecture model; it appends
the base logical architecture model with tagging information,
so a single unified augmented model can hold tagging
information for all tag types. The aspect model also ties into
the general EDICT framework for augmenting models, and
leverages all the existing augmentation features. For
example, it appears in common displays for viewing
augmentation models as shown in Figure 9.

User interface features allow for creating, viewing, and
editing these aspect models with wizards that enable users to
add a new aspect model to their current design effort. The
wizard allows users to select a particular set of tags to
associate with the current logical architecture model, and
guides them through the process of updating their current
design effort and design option with the new model. Once
created, these aspect models can be viewed and edited (see
Figure 10).

As can be seen in this screenshot, the editor is
composed of a number of controls. The top left portion of
the editor displays a list of all the components in the current
logical architecture model. This list can be sorted by name,
or by assigned tag type. This list is a hierarchical tree view,
with child/parent components shown in a nested fashion.
Each component is accompanied with an icon representing
their tag assignment. Each tag has an associated colored
icon along a red-green color spectrum, representing the
criticality of that tag (Green = least critical, Red = most
critical). For components with no children, their associated

tag icon is simply that of the tag they have been assigned.
For components with sub-components, the displayed icon
represents the most critical dependability tag that any of
their child components has been assigned.

The top-right portion of the display shows a visual
representation of the logical architecture model. The
currently selected component in the tree view will be
highlighted in the visualization. The visualization can be
manipulated as would be expected of any EDICT
architecture visualization: it can be zoomed, scrolled, etc.
The bottom-right portion of the visualization shows a listing
of all the tags in the associated tag set, and a description of
the currently selected tag. There are controls for assigning
and removing a tag to the currently selected component.
The currently selected component’s name and description
are also shown.

A checkbox is also shown in the middle of the display.
This checkbox can be unchecked to specify that a
component, or set of components, should be explicitly left
untagged. This indicates in the architecture model that
certain components are deliberately untagged, and not to be
considered to have any aspect assignment. When this
checkbox is unchecked, the entire lower-right hand portion
of the display will be disabled. This reinforces that no tags
are to be assigned, and prevents the user from performing an
inconsistent tag assignment operation.

Shown at the very bottom of this screenshot is the
model verification view. This floating view will display any
known problems that might arise with the aspect model

Tagging System Architectures

A separate, but visually similar set of features is
provided for associating tags with system architectures.
The editor (Figure 11) provides a corresponding feature set
as provided for logical architectures. The architecture model
is shown in a hierarchical tree form, with a visualization of

Figure 10:9 Logical Architecture Tag Aspect Editor

Figure 9:10Logical Tag Augmentation status display



7

the entire system architecture. Components are listed with
color-coded icons, and the same basic tag and component
data is displayed. Tags can be assigned to components or
groups of components, and removed/reassigned with same
controls. A model verifier is provided to update the Model
Verification View with information about the displayed
aspect model.

Viewing the System Architecture

A set of visualizations for viewing aspects provides a
central place for users to explore and visualize various
aspects of a system architecture model. The viewer shown
in Figure 12 allows the user to visually explore the model
from a tag-based perspective. Controls along the top left
allow users to highlight tagged components and/or tagged
connections. When the components checkbox is selected,
this view will show aspect tags applied to system
components. When the connections checkbox is selected,
this view will show connections that carry data that has been
tagged via the data library aspect model for tags.

This example, illustrating security tags, shows a list of
tags from the security tag set and an option for showing
components with multiple criticalities. When a given tag is

selected, the visualization in the right-hand side of the
display will update to highlight components and/or
connections that have been augmented with the selected

security tag. If the “Multiple Criticalities” entry is selected,
then components with more than one security tag will be
highlighted. This feature is useful for identifying
components that must support multiple levels of criticality.
The final option is for explicitly untagged items. When that
option is selected, all items that have been marked as
explicitly having no security values will be highlighted.

The visualization can be scrolled, zoomed, selected, etc.
as with a typical EDICT architecture view. When a
particular component is highlighted, the bottom portion of
the display will show a list of all the security tags that apply
to the selected component. This enables a user to see all the
security tag values that have been applied to a component, if
more than one has been applied.

Other tag viewing features within the system
architecture browser have also been updated to make use of
security tags. One such feature is the flow viewer within the
system architecture browser (Figure 13).

This viewer allows users to explore data flows between
components within the system architecture. The left-hand
side portion of the view shows a list of all the end-to-end
flows within the current system architecture. To the right is
a visualization of the current system architecture. When a
flow is selected, the visualization updates to highlight the
components and connections that compose the selected flow.
Additionally, a simplified representation of the selected flow
is displayed along the bottom-right portion of the display.

When the security tag view option is selected, the
bottom of the display also shows a list of the security tags
that make up the security tag set applied to the current
augmented architecture. Additionally, the bottom-right
visual will be color-coded with the security tags that have
been applied to the components and connections that make
up the selected flow. These visualizations make it easy to
see how the criticality level varies along the entire path of
the flow.

A listing appears below of the aspect tags contained in
the current model. When a given tag is selected, a

Figure 11: System Architecture Tag Aspect Editor

Figure 12: System Architecture Tag Viewer

Figure 13: Flow Viewer Security Mode



8

visualization on the right-hand side of the display highlights
components and connections associated with the given tag.
The highlighting color will be the same shade as the icon
shown next to the current selected tag. Users can manipulate
the visualization (scroll, zoom, etc.) to navigate the system
model and get a sense for how dependability tags have been
applied.

Viewing Mixed Criticality Regions

The creation of the Mixed Criticality Region Model is
performed dynamically in an analyzer. After running the
analyzer, an overview of the region model is displayed
depicting the regions in a directed graph. The overview
page is shown in Figure 14 with an example Mixed
Criticality Region Model displayed. The center portion of
the page shows the region model with each region and all of
the region dependencies. This display uses several visual
cues to help the user understand the model. The regions
display the color associated with the criticality level of the
region. The display also uses size to indicate general
relations of the region to the underlying architecture. The
size of each region is based on the number of components
that have been allocated to the region (more component =
bigger region) and the number of architectural interfaces that
cross region boundaries (thicker line = more interfaces).

A selection box allows the designer to pick the specific
aspect they are interested in viewing. By selecting a specific
aspect, all of the analyzer pages will filter their display to
show only the details belonging to that aspect. Beneath the
aspect selection box, totals for problems found in the aspect
region model are displayed. These problems point out areas
where there is potential aspect overlap, cross region
dependencies and areas where shared resources have
criticality conflicts. Beneath the totals, the Tag Set
associated with the selected aspect is displayed listing all of
the criticality levels to help guide the user when exploring
the aspect region model.

The components which compose the region are
displayed in a table beneath the graph when a region is
selected. This supporting view allows the user to browse the
regions and see the relationship the regions have with the

underlying architecture. By selecting a cross region
dependency (connection between the regions), the interfaces
that connect components from the two regions spanning the
dependency are displayed in the table beneath the graph
allowing the user to see the data that is transferred across
region boundaries.

The Overview page also contains a tally of the problems
found during region model creation. These problems can be
classified as one of the following three cases:

1. Region Overlap – A component is found in more
than one region within an aspect. This is an
indication that the component is assigned functions
with multiple criticality levels.

2. Cross Region Dependency – A region of one
criticality level depends on a region of a different
criticality level. This is an indication that data is
flowing from one level of criticality to another and
highlights key points in the architecture where data
protections may need to be applied.

3. Shared Resources – Components from separate
regions are bound to (or supported by) the same
hardware components in the architecture. This
indicates a shared resource which supports
processing multiple criticality level.

For each of these cases, a separate viewing page is
devoted to illustrating the problem in order to help the
designer locate the specific architecture model objects
involved.

Run-time Platform Configuration

Once the aspect criticality analysis has been completed,
the system architecture that has been derived is ready to be
implemented. Automatic extraction of parameters can be
performed for the configuration of the run-time platform.
Configuration of mechanisms that control partitioning,
process allocation and communications from that validated
system architecture model enhances confidence that the
deployed system matches the analyzed system and eases the
verification burden. The architecture model contains many
essential elements for the run-time platform configuration:

 Partitioning

 Task allocations

 Task schedules

 Communication paths

This information can be used to configure system
infrastructure and ensure a strong correlation between the
analyzed system and the deployed system.

Figure 14: Table Based Display for Region Viewer



9

Configuration information is extracted from architecture
model and related property sets such as the ARINC 653
Annex under development for AADL 2 [10]. The extracted
configuration data is formatted into an open XML based
format for export to other tool sets through the EDICT Tools
and the Eclipse tool platform. Figure 15 provides an
overview of the configuration process from the validated
architecture model though to the run-time component.

RTOS vendors are beginning to provide interfaces for
XML based configuration of run-time platform. An example
of this is the configuration approach and tools for Wind
River’s 653 RTOS [10]. These tools provide a path to use
XML based configuration data to control the operating
system features and services and their run-time
configuration. This type of approach is not limited to
RTOSs but can also be used for middleware components and
communication services. Our approach is also viable with
run-time components that do not support XML based
configuration. We can support backend translators for the
EDICT tools that can address the needs of vendor specific
formats.

CONCLUSION

Our paper presents an approach that addresses the
challenge of designing a mixed-critical system that is
suitable for real-time systems with
security/safety/dependability concerns. We have developed
as set of techniques that will enable mixed-critical systems
to be modeled, analyzed and verified early in design cycles
to reduce development costs and time through early defect
detection and removal, enhance system robustness through
the establishment of known system properties for
dependability, safety and security and reduce verification
costs by providing incremental model based verification
throughout the development process.

In summary, our work provides methods and tool
support for:

1. Multi-aspect Criticality Specification - Techniques
for the flexible and extensible specification of
criticality across multiple system aspects of
dependability, security and safety. These
techniques enable the creation of criticality tuples
to describe component criticality in multiple
aspects.

2. Aspect Criticality Regions – Aspect Criticality
Regions provide a powerful abstraction for
representing mixed criticality levels and enabling
analysis of mixed critical architectures. The
regions define areas where there are criticality
conflicts due to shared resources or functional
allocations and identify the key interfaces between
different levels of criticality.

3. Architectural Analysis for Criticality Regions –
With defined regions of criticality a mixed critical
architecture can be analyzed to ensure that the
partitioning, information flow and protection
services are deployed in the architecture to enforce
the region attributes. This innovation enables early
validation and trade-off analysis for mixed critical
systems.

4. Run-time Platform Configuration from
Architecture Models – Once architecture models
are validated through aspect region analysis the
configuration of the critical computing platform
components (operating systems, communication
services and middleware components)is extracted
and used to set the characteristics of the partitioning
and information flow in the deployed system. This
enables a strong coupling between the validated
architecture model and the deployed computing
platform.

Figure 15 - Run-time Platform Configuration

Control System

Core Control Processor I/O Control Processor

System Bus

Sensor
Device

Actuator
Device

20 ms

Sensor Filtering

100ms

System Control

User Input
Processing

250ms

User Display

50ms

Device
Control

Sensed
Data

User Orders

User State and Status

Device Commands

System Hardware Implementation

System Software Deployment

Display Processor

User Input
Device

Display

500ms

Data
Recording

Control and Order
Logging

Device Logging

Run-Time
System

Configuration

Architecture
Configuration

Extraction

Validated
System

Architecture

* Wind River Systems, Inc.

Processes : Stack : Ports :
Channels : Window Schedule



10

REFERENCES

[1] EDICT, http://wwtechnology.com/EDICT/

[2] LaValley, B. and Walter, C., "Information Assurance
Certification with EDICT-IA", Layered Assurance
Workshop affiliated with 28th Annual Computer
Security Applications Conference (ACSAC). December
3-4, 2012.

[3] Walter, C. and LaValley, B., "The EDICT Tool Platform
for Model Based Architecture Modeling and Analysis".
In IEEE/AIAA 31st Digital Avionics Systems
Conference, October, 2012.

[4] RTCA, “Software Considerations in Airborne Systems
and Equipment Certification,” Radio Technical
Commission for Aeronautics (RTCA), European
Organization for Civil Aviation Electronics
(EUROCAE), Standard Document no. DO-178B/ED-
12B, December, 1992.

[5] Commitee, Joint Software System Safety. Software
System Safety Handbook. 1999.

[6] Joint Air Force – Army – Navy JAFAN 6/3 Manual,
October 15, 2004.

[7] Department of Defense Directive 8500.1, October 24,
2002.

[8] DCID 6/3 Protecting Sensitive Compartmented

information within information systems.

http://www.fas.org/irp/offdocs/DCID_6-

3_20Manual.htm .

[9] MIL-STD-882D Standard Practice for System Safety.
February 10 2000.

[10] The Architecture Analysis and Design Language
(AADL) web site, http://www.aadl.info/

[11] Kinnan, L. “Use of ARINC 653 in Safety Critical Flight
Systems”, Flight Software Workshop, Presentation,
2007.


